New publication: Finding the species that make a muck diver tick

Now that my PhD thesis has been submitted, it is time to start blogging again! In the very near future I will write a new blog about this whole PhD-writing experience, but for now I will tell you about a new paper that has been published recently in the scientific journal Ocean and Coastal Management.

The paper, “Known unknowns: Conservation and research priorities for soft sediment fauna that supports a valuable scuba diving industry“, describes which species are most important to muck dive tourism, and how much research and conservation work has been done on them. I investigated this using a specific method that is pretty new and has not been used in conservation work until now.

Froggie pair_MDB

Who doesn’t like a frogfish (Antennarius pictus)?

Since these the method and the results will be of interest to different people, this blog is split in two parts:

  1. How did I do the research?
  2. What are the results?

If you are a scuba diver, a dive professional, a travel agent or otherwise mostly interested in the cute animals, it’s completely fine to head straight to number two (even though you will be missing out). If you are a resource manager, work for an NGO, are interested in marketing, or conduct research on flagship species, definitely read the first part of this blog as well!

First section: the Best – Worst Scaling method and why everyone should start using it

wwf-logoIt is important to first think about why anyone would care about which species are important to muck dive tourism, or any kind of tourism by extension. The obvious answer would be “marketing”, if you know which species attract the tourists, you can use them in your advertising and that way attract more tourists. If that is too capitalistic for you, remember that dive tourism provides (mostly) sustainable incomes to thousands of people around the world. But there is more, people might not visit a destination, but still care very deeply about certain species. This principle has been used (very successfully) by many conservation organisations to set up fundraising campaigns. The best known example is probably the World Wildlife Fund, which uses the panda bear as a logo, even if they are trying to protect many more species.

Best of Dauin_Blue ringed octopus_small

Blue ringed octopus (Hapalochlaena sp.) are popular with divers, maybe because of the cuteness combined with its deadly bite?

With that in mind, how do you find out which are the animals that people care about? You can obviously just ask people what they like, get them to make a list of top 5 animals, rank a number of animals in preferred order, give scores to certain animals, etc. But there are some serious problems with most of these methods such as:

  • They are not always reliable, since some people will be consistently more or less positive, or have cultural biases, throwing off your scaling
  • They can be very labour-intensive (=expensive) to properly design and collect data on
  • Statistical analyses of the results are usually very hard to get right
  • It is very difficult to say how the preferences vary between different groups of people (male-female, age, nationality, etc.)

To overcome these issues, we used the “Best-Worst scaling method” and compared it to a traditional survey. This method has been around for a few years, but is mostly used in food marketing (wine!) and patient care in medical research. The big benefit of Best-Worst scaling is that doing the stats is really easy, and without too much extra effort you can also easily interpret how different groups have different preferences.

flamboyant-cuttlefish2

Flamboyant cuttlefish (Metasepia pfefferi) might not be popular with researchers, but divers love them!

Without going into too much detail, the basic design of Best-Worst scaling is that you ask people what they would like MOST and LEAST from a fixed set of animals (or any other thing you are investigating). There are plenty of online platforms (we used Qualtrics) that allow you to design this kind of question, so it’s quick, easy and cheap. Getting results is as simple as subtracting the amount of times an animal was picked as most preferred and the number of times it was least preferred.

Figure 1

Example of a Best-Worst Scaling question

The reason I am describing this method here, is that it is just not known enough in the conservation, or even tourism world. It has the potential to allow all kinds of organisations with limited funding (NGOs, marine parks, or even dive centers) to investigate why people would visit / where they will go / what they care about. Which, eventually, might lead to more research and conservation on those species.

Second section: Which species drive muck dive tourism?

Mimic Octopus

The mimic octopus (Thaumoctopus mimicus), number 1 on many muck divers’ wish list

The results of the surveys won’t come as a shock for avid muck divers or people in dive tourism, but do seem to surprise from people unfamiliar with muck diving. Here is the top 10:

  1. Mimic octopus / wunderpus
  2. Blue ringed octopus
  3. Rhinopias
  4. Flamboyant cuttlefish
  5. Frogfish
  6. Pygmy seahorses
  7. Other octopus species (e.g. Mototi octopus)
  8. Rare crabs (e.g. Boxer crabs)
  9. Harlequin shrimp
  10. Nudibranchs

While other species such as seahorses or ghostpipefishes are also important to muck divers, a dive location that does not offer the potential to see at least a few of the top 10 species is unlikely to attract many divers.

3_MDeBrauwer_Nudie_name

Nudibranchs (Tambja sp.) are always popular with photographers

Some differences did occur between diver groups of divers. Older and experienced divers seemed more interested in rare shrimp than other groups. The preferences of starting divers was poorly defined, but their dislikes were most pronounced than experienced divers. Photographers in particular are interested in species like the mimic octopus, potentially because of their interesting behaviour, although that would have to be investigated in a follow-up study.

The final step of our study was to look at how much we know about the animals most important for muck dive tourism. The answer is simple: not much. For most species researchers have not yet investigated if they are threatened, or not enough is known about them to assess their risk of extinction. It does not look like this will chance soon either. The combined amount of research conducted on the top 10 species in the last 20 years is less than 15%  of the numbers of papers published on bottlenose dolphins (1 species) in the same time. Which are not threatened by extinction in case you were wondering. To give you another comparison, from 1997 until now, 2 papers have been published on the flamboyant cuttlefish, compared to more than 3000 on bottlenose dolphins.

Don’t get me wrong, I am not saying we should stop researching dolphins, but perhaps it is time that some of the research effort and conservation money is also invested in the critters that make muck divers tick?

Harlequin shrimp_MDB

Harlequin shrimp (Hymenocera elegans), popular with divers AND the aquarium trade

Advertisements

Work in progress….

I am currently in the final stages of writing up my PhD-thesis, so not much time to blog. I’ll be back soon, but in the mean time, here are some fresh critter pictures from Raja Ampat to keep you happy!

Cuttlefish hunting_MDB

Hunting cuttlefish (Sepia sp.) in Raja Ampat

Goby_Bryanonops_MDB

Goby (Bryaninops amplus) in gorgonian seafan

Octopus_MDB

Curious octopus checking out my camera

Hippocampus bargibanti_MDB

Bargibant’s pygmy seahorse (Hippocampus bargibanti) chilling out in its gorgonian seafan home

Amphiprion sandaracinos_MDB

Orange anemonefish (Amphiprion sandaracinos) posing for the camera

Interlude

It has been quiet on the blog, mostly because I spent a few weeks recharging my batteries in Europe. But it’s action time again now and there is lots of cool stuff going on! So a short blog to bring you up to speed.

IMG_8845

Getting ready to hop into the Silfra fissure

The last weeks I’ve had the pleasure of exploring some new places in Europe and meeting up with friends I had’t seen for too long. One of the highlights of the trip was that I’ve finally managed to snorkel Silfra fissure in Iceland. Silfra is a gorge in the Thingvellir national park, a rift valley between the North American and Eurasian tectonic plates. So snorkeling in the Silfra fissure means that you are basically snorkeling between two tectonic plates, and it’s quite the experience. Besides being very cold (it was -12°C outside and 2°C in the water), it has the coolest topography and amazing visibility, up to 100m!

IMG_8852.JPG

Silfra Fissure landscape

The Europe trip ended with a visit to the University of Tubingen, where I met up with people that do some exciting research on fish biofluorescence. The lab does some very cool work, like investigating how fish see the world, whether or not they can see fluorescence, etc. It was very interesting to talk with them and learn about their research, and fun to share my work with them.

Which brings me to what’s happening my research. I am now at the very last push of my PhD, with less than 3 months to go before submitting my thesis. There is still work to be done, but I’m happy that multiple papers are currently in review, and will hopefully be published this year. Two of those papers will be of big interest to scuba divers and photographers. One of them might even cause some commotion all the way into zoos and aquaria. I will share them here as soon as they have gone through the review process.

Lastly, some really exciting news about future work. Last month I received a grant from the Mohammed bin Zayed Species Conservation Fund to run a project that will benefit one of the world’s most endangered seahorses. Together with my friend Louw, which you might remember from her guestblog, we will be looking at new ways to detect the endangered Knysna Seahorse (Hippocampus capensis). Louw and me will be collaborating with the TrEnD lab in Perth to make a difference in the conservation of this beautiful critter. This project will start immediately after handing in the PhD, so I will be able to share new critter insights for a while longer.

H. capensis_cropped

The endangered Knysna seahorse (Hippocampus capensis) – Photo: Louw Claassens

Guestblog: Frogfish history

IMG_0737This is the second guestblog by Daniel Geary, resident marine biologist  and frogfish-enthusiast at Atmosphere Resort in Dauin, Philippines. You can read his first blog here. In this new guestblog Daniel explores the history of frogfish research and provides an introduction to a few common and not-so-common frogfish species.


There are many places across the globe where divers can see frogfish, but the Philippines (especially the Dauin area) is one of the best frogfish destinations of them all. I have personally seen thirteen species in this country, including 11 species here in Dauin. Sometimes we will see over 30 individuals on a single dive! It is not uncommon for some of the frogfish to stay on the same site for over a year, especially Giant Frogfish. Another great destination for frogfish is Indonesia, especially Lembeh, Ambon, and also some places in Komodo. Generally, if there is good muck diving, there is good potential for frogfish action. Australia also has some unique frogfish species, as well as the Caribbean, where there are a few places with reliable frogfish sightings.

Although frogfish are relatively well known critters to divers in the Indo-Pacific, this has not always been the case. Stories of frogfish and their accompanying drawings and sketches have existed for hundreds of years, with encounters spanning the globe. The first ever documented frogfish comes from Brazil. At some point before 1630, a drawing was given to the director of the Dutch West India Company. A woodcut was made from this drawing, and that woodcut was published in 1633. The first color drawing appeared in 1719, published by Louis Renard, an agent to King George I of England. He published a collection of color drawings of Indo-Pacific fish and other organisms and some of these represent the earliest published figures of Indo-Pacific frogfish. One was called Sambia or Loop-visch which translates directly to “walking fish.”

photo 1 - louis renard

First colour drawing of a frogfish – Louis Renard 1719

Albertus Seba and Philibert Commerson were two important scientists in the 1700s when it comes to frogfish. Seba believed frogfish were amphibians and tried very hard -incorrectly of course – to prove that they were the link between tadpoles and frogs, although anyone who has seen a baby frogfish knows this to be false. Even though he incorrectly identified a few nudibranchs as juvenile frogfish, he was still able to identify two species, the Hairy Frogfish (Antennarius striatus) and the Sargassumfish (Histrio histrio) during his studies. Commerson was the first scientist to focus solely on frogfish. He was a botanist and naturalist employed by the King of France and he described three species from Mauritius (Painted Frogfish – Antennarius pictus, Giant frogfish – Antennarius commerson, Hairy Frogfish – Antennarius striatus).

photo 2 - hairy frogfish

Commerson’s drawing of the hairy frogfish – Antennarius striatus

There have been plenty of identification problems when it comes to frogfish, even today.  Frogfish colorations and patterns are highly variable, so it is nice to know people have been struggling with frogfish identification for hundreds of years. Albert Gunther, a scientist who attempted describe the different species of frogfish, said in 1861 that “[their] variability is so great, that scarcely two specimens will be found which are exactly alike…although I have not the slightest doubt that more than one-half of [the species] will prove to be individual varieties”. He listed over 30 species, but only 9 of those species are still accepted today. Since 1758 there have been over 165 species described and over 350 combinations of names. Currently there are around 50 accepted species, roughly one third of the total species described.

FROGFISH SPECIES PROFILES

Painted Frogfish – Antennarius pictus

This is the most abundant frogfish species in the Indo-Pacific. They can be identified by having 3 distinctive spots on their tail. They prefer to live near sponges, rocks, ropes, mooring blocks, and car tires. They can grow to a maximum size of around 15 cm.

OLYMPUS DIGITAL CAMERA

Painted frogfish (Antennarius pictus) with its typical three tail spots

Sargassumfish – Histrio histrio

This is the species with the largest distribution. They can be found in floating seaweed or debris as well as anchored seaweed and other marine plants. They can reach a maximum size of around 15 cm and are often sold in the marine aquarium trade.

sargassumfish.jpg

Sargassumfish (Histrio histrio), a surprisingly good swimmer that lives on floating seaweed

Psychedelic Frogfish – Histiophryne psychedelica

This is one of the rarest frogfish species. They are only found in Ambon, Indonesia at a handful of dive sites, usually at around 2-3m hidden in rock crevices or in coral rubble.

OLYMPUS DIGITAL CAMERA

“Snooted” picture of a psychedelic frogfish (Histiophryne psychedelica)

Giant Frogfish – Antennarius commerson

This is the biggest frogfish species, reaching lengths of more than 40 cm. They prefer to live on sponges and have two large spots on their tail, as well as lines coming from the eye and enlarged dorsal spines.

OLYMPUS DIGITAL CAMERA

Giant frogfish (Antennarius commerson) resting on a sponge. Note the two tail spots

Ocellated Frogfish – Nudiantennarius subteres

This frogfish species is the “newest” frogfish species. Originally thought to be a new species, it turns out this species is the previously described, relatively unknown “Deepwater Frogfish”, although the lure is incorrect in the original drawing. It was thought that the adults lived deep and only the juveniles were found in the shallows, but  adult mating pairs of this species have been seen at less than 10m depth. They grow to around 5 cm.

ocellated.jpg

Typical coloration of the Ocellated frogfish (Nudiantennarius subteres)