Ambon and Halmahera fieldwork: Mini-blog 2 – Logistics

I have made my way to Ambon since the last blog, where I have been preparing the last logistics with my local colleagues from Pattimura University before the actual fieldwork begins. In the last 3 days, the other team members have also started arriving, with the final team member (and master fish counter) landing tomorrow morning. The main things that had to happen before our boat leaves port (besides recovering from jetlag), was organising a detailed plan, training new team members, and preparing all the gear. 

IMG_7485

Cloudy Ambon days

One of the things we will be doing, is collecting environmental DNA (eDNA) to study biodiversity on coral reefs. If you want to know more about eDNA, I have written more about it here or here. In short: eDNA are tiny fragments of DNA in the water column that come from poop, mucus, etc. By filtering and analysing a scoop of water, we can tell what lives in the area we took water from. Because eDNA is such a new method, most people have not used it before. So in a great mutual benefit arrangement, our Pattimura University colleagues took us (my colleague Dom and me) out for a dive and in return we showed them how to collect water 😉

We obviously did more than just collecting seawater, we also went back to the lab to teach them the protocols on how to filter samples while avoiding contamination. Since eDNA analysis is so good at picking up the tiniest fragments of DNA, a careless brush of a fingertip can render the entire sample useless. We are collecting data from a boat instead of a high-tech lab, so being aware of how things can go wrong is absolutely crucial to get reliable data.

Tomorrow morning we set sail (start engine?) for 10 days of research around Ambon. So today we had make sure all the equipment got to the boat, for us to leave at first light in the morning. Between dive gear (including compressors, tanks, etc), survey tools, eDNA equipment, and other random practical bits and pieces, it took multiple returns trips with the pickup to get everything to the boat. Science is of course hungry work and feeding 16 people takes a lot of grocery shopping, which was luckily taken care of by our local team. Gino (our Ambon trip leader) has assured me we have an excellent chef on board, so be aware that there is a decent chance that the rest of these fieldwork blogs will mostly be about tasty Indonesian food!

As we will be on a boat for quite a while in the next weeks, I am not sure yet if I will be able to post blogs until we are back on the mainland. If I can snatch up some 4G signal along the way, you’ll be able to read an update on the fieldwork in a couple of days. Otherwise, the next blog will be online around the 11th of October.

IMG_7494

Sunny Ambon days

New research project: diversity in Wallacea

A few weeks ago I wrote about starting an exciting new project at the University of Leeds. At the time I didn’t go into details, but now that I’m a few months in and I am starting to understand what is going, so it’s time to enlighten you as well.

Leaf scorpionfish

Coral reef critter research coming up!

For the next two years I’m part of a team that will study marine biodiversity on coral reefs in central Indonesia. The overarching goal of of the project is to improve the management and conservation of coral reefs by discovering how impacts such as pollution or overfishing change the way coral reefs function. After all, the best way to start solving a problem is by properly understanding it.

Obviously, there’s a lot more to it than the lofty big goal as the title of the project indicates: “Gradients of marine biodiversity and linkages with eDNA across the Wallacea Region”. There are two components to the project: traditional visual surveys and environmental DNA (“eDNA”) surveys. We will use both methods to create ecological networks and see how they differ when they are threatened by different impacts.

At this point you might be asking a few (logical) questions:

  • Where is the Wallacea region and why do you go there?
  • What is eDNA?
  • What is an ecological network?
  • Why should I care? I came to this site to read about critters!

The Wallacea region is the central part of Indonesia, from Lombok eastward almost all the way to Papua, and up all the way to Halmahera (check out the map below). It was named after Alfred Russel Wallace, the scientist who, together with Darwin, developed the theory of evolution. The region represents an interesting boundary area where fauna and flora from the Asian and Australian continents meet. So it is home to some amazing wildlife, but also to a large human population that depends on natural resources to survive. The marine diversity in the region has not been studied very well (except for a few local exceptions), so finding out how healthy the marine ecosystems are is quite important.

Central Indo

The Wallacea Region

Environmental DNA (eDNA for short), is a relatively new method to detect species. I have written about it extensively here if you want a long explanation and background. The method detects tiny fragments of DNA in the water column that are shed through poop, mucus, etc. By filtering and analysing a scoop of water, we can tell what animals (and plants, microbes, etc) live in the water nearby. It’s pretty powerful and very exciting, but still needs a lot of additional testing to know just how precise it is compared to other survey methods.

I will then build ecological network models with all the data we collect. The easiest way to imagine what those are, is to see them as a different kind of food web. Where food webs focus on who eats who, we are more interested in who lives close to who, and who interacts with who. In the ideal situation I will include all the information on fish, corals, algae, invertebrates (crabs, sea stars, etc.) in one big model which will show how they rely on each other. More importantly, it will also show what happens with the networks if sites are overfished or polluted and how that differs from untouched sites.

Species-interaction-networks-at-Norwood-Farm-Somerset-UK-revised-from-Pocock-et-al

Example of an interaction network on land, figure by Bohal et al. 2013. Source here.

So yes, my job for the next few years is less critter-focused than before, but it doesn’t mean I will be ignoring them! Besides the obvious fact that there’s a lot of cool critters to be found on the coral reefs I’ll be visiting, I am still involved in a few very cool projects on the side. It’s too early to go into details, but more seahorse and seadragon work is coming up, and even some exciting pygmy seahorse news as well! I’ll regularly be posting updates on the Wallacea project, as well as more critter features, so stay tuned 🙂

Finding the Knysna Seahorse: Mini-blog 6

I feel like I only just arrived in South Africa to look for endangered seahorses, but instead I am flying to Johannesburg where I will catch a connecting flight to Perth. This trip was no different than other fieldwork trips in that regard: what looks like a long time of sampling at the planning stage just flies by before you know it.

Louw and me have been busy since the last mini-blog. Most importantly, we successfully finished sampling! The last locations were less explored areas than the first ones, which is very exciting. Even if we do not find seahorses in these spots, they give inspiration to come back for new research projects.

IMG_1921

Cormorant in Jongensfontein

After wrapping up the sampling we visited Stellenbosch University. The university is the home to the von der Heyden Lab, which specialises on genetic research for conservation and biodiversity planning. They also have an eDNA project which investigates fish diversity in South Africa. During our visit I gave a talk about my own research to the marine students in the university. It was great to share my love for strange critters, especially since the students had some very relevant questions at the end of the talk. As much as I enjoy talking (or writing) about my research, it’s even more fun to have a conversation about it and getting a fresh look through someone else’s eyes.

IMG_2043q

South African penguins (Spheniscus demersus) taking a stroll

In the last two days of the trip we relaxed, caught up with friends, and explored Cape Town and False Bay. The highlights were definitely diving in the kelp forests of Simonstown and visiting the nearby African penguin (Spheniscus demersus) colony. While I have dived in cold water before, I never had the pleasure of seeing this particular ecosystem. If you ever have the opportunity, I can highly recommend it!

IMG_2164

Kelp diving

If a coral reef dive is like swimming through an underwater flower garden, kelp diving would be the equivalent of walking through a forest. There’s something very special about weaving your way through underwater plants that reach from he bottom all the way to the surface. The sunlight is filtered and the canopy above creates shadows you just do not get in other kinds of diving. On top of that, the bottom is very rich with all kinds of life. There are plenty of invertebrates like sea urchins, featherstars and nudibranchs. The fish life is very different than what I am used to, the small pufadder shysharks (Haploblepharus edwardsii) only live in South Africa area and are the cutest little things. To top it off, two southern right whales passe by close to shore as we were exiting the water. Louw even managed to snorkel out and catch a glimpse of them!

I guess it’s safe to say that this trip has been a successful one. It will be another few months before we will have all the results, but I am very excited to discover in which places we found the elusive Knysna seahorse!

IMG_2134

Not a bad spot for a dive…

 

Finding the Knysna Seahorse: Mini-blog 5

It’s already been a week since I arrived in South Africa to study the endangered Knysna seahorse with Dr. Louw Claassens from the Knysna Basin Project. Together we are testing if environmental DNA (eDNA) can be used to find rare seahorses and pipefishes.

38875489_206756850187960_5584208399702163456_n

eDNA filtering in progress

To do this, we have been travelling along the southern coast of South Africa, taking water samples along the way in estuaries where our focal species lives, where it used to live, or where it might live. Yesterday we left Knysna to sample water in Klein Brak and Groot Brak. We are especially interested in the Klein Brak estuary, since there are multiple anecdotes that the Knysna seahorse (Hippocampus capensis) used to live here. Nobody has checked recently if it really was the Knysna seahorses and it seems that the most recent sighting has been many years ago. Because of this, it is usually assumed that there are no more Knysna seahorses in Klein Brak.

This brings me to a very important (maybe the most important?) question about this whole endeavour: WHY are we actually doing this? It’s all good an well to say that we want to help these endangered animals, but what exactly are we hoping to achieve? What will our results mean for managing the endangered Knysna seahorse, the critically endangered Estuarine pipefish, or any other endangered small fish for that matter?

IMG_1835

Knysna estuary, just imagine all the seahorses down there!

What we are hoping to achieve can be summarised in three main points.

  1. We want to test if the eDNA method can really be used to find small, endangered fishes (particularly seahorses and their relatives). So far, previous research has shown that eDNA work on large fishes such as sawfish, but it is not sure yet if this will work for seahorses, which are obviously much smaller.
  2. The best case scenario would be that we could also find seahorses in estuaries where it was thought to have disappeared. This would be great news for the conservation status for the species, as it would mean that it occurs in a wider area than we thought, which would mean that it is less likely to go extinct.
  3. If this would happen, it would mean two things. First of all, the new locations would have to be studied, so we can find out how many live in these estuaries. It would also mean that those new places need extra protection and monitoring to ensure the species do not disappear from their newly discovered homes.

Ultimately, if the eDNA method works for small, endangered seahorses (or their relatives), it could be used to monitor small fishes worldwide. This would help solving one of the biggest problems with studying small species, especially those that are rare or hard to find.

LouwKnysna (1)

Louw looking for Knysna seahorses in the Thesen Island Marina (she found 3!)