Keeping seahorses

The last two months I have been running an experiment that involves keeping more than 30 seahorses in aquaria. Not because I am trying to become a marine aquarium expert or because I like seeing fish in tanks. On a personal level I think there are too many environmental issues with aquarium trade to get into it myself. Overfishing of species like Banggai Cardinalfish and Mandarinfish are two examples that come to mind. But this post is not about the aquarium trade, so I will leave those particular issues for another time. While I prefer seeing seahorses in the ocean, for this experiment it was necessary to bring them to the “Curtin Aquatic Research Laboratories” (CARL). This blog explains some of the challenges that come with keeping seahorses healthy in an aquarium. If you are considering ever keeping seahorses yourself, please read this blog carefully.

14808071_10154728145537608_910910029_o

West Australian Seahorses (Hippocampus subelongatus) in their artificial seagrass home

DISCLAIMER: This blog describes scientific research, catching seahorses as a private person is NOT allowed in Australia. If you have any questions about keeping seahorses, feel free to contact me in the comments section.

First challenge: Permits. It takes a lots of paperwork to be allowed to do research on seahorses in captivity. Seahorses are on Appendix II of CITES (Convention for International Trade in Endangered Species), which means they cannot be traded internationally if they are smaller than 10cm. But it does not mean that seahorses cannot be fished. As a matter of fact, they are caught in their millions for traditional Chinese medicine! For this experiment it was crucial to use wild-caught West Australian seahorses (Hippocampus subelongatus), which meant applying for permits from the Department of Fisheries and seeking approval from the Department of Parks And Wildlife. Besides government paperwork, doing any kind of research with animals means writing up extensive application (close to 40 pages) for the universities’ ethics committee to ensure proper treatment of the animals while in my care.

seahorse_tank

Seahorse tag with red elastomer so it can be identified later

Second challenge: Catching seahorses. As anyone who has ever looked for seahorses can attest to, they are hard to find. There are a few sites around Perth where there are plenty of seahorses to be found, but getting all seahorses from one location would have a huge impact on that particular site. To limit the impact of my collecting, I spread out my fish-catching over multiple sites. To further reduce impact, I did not take any pregnant males or any seahorses that were clearly couples ready to mate. Since I needed a variety of sizes and a similar amount of males and females, collecting enough seahorses took a lot of dives spread out over a few weeks. Once seahorses were caught, they also needed to be transported safely to our facility, which meant not going too far, and using specialised tools to  (sturdy catch bags, coolers, oxygen, etc.) to reduce stress for the animals during transport.

Third challenge: High quality aquaria. Seahorses  are notoriously difficult to keep in tanks. They are very sensitive to bad water quality, which can lead to all kinds of issues. Preparing the aquaria started 6 weeks ahead of catching the seahorses. This is  done to ensure that the biofilters that ensure good water quality get properly established. The tanks themselves need to be large and high enough to house seahorses, and they need hold-fasts that mimic seagrass so the seahorses have something to cling on to.

img_7536

First arrivals in the tanks

Seahorses live in salt water, so getting seawater is another issue. Our labs are not directly by the ocean, so we need to import seawater. This then gets sterilised (using UV filters) before we use it. Water quality needs to be monitored daily and adjustments made where needed. This means no weekends off since minor problems could mean dead seahorses. While we have the aquaria and equipment available at CARL, the costs of this would be considerable for a private person.

Fourth challenge: Food. This is probably the biggest challenge of them all. Wild-caught seahorses only eat live food and will not eat dry or frozen fish food. So we need small shrimp to feed them. In our case we are using artemia (= sea monkeys = brine shrimp). Artemia are tiny (less than 1mm) when they hatch, but our seahorses will only eat them when they are about 1cm in size, which means  they have to be grown out for a few weeks before feeding. So we prepared 3 different artemia cultures, each one set up 2 weeks apart to ensure a constant supply of right-sized food. The artemia also need to be fed, in their case with algae. This means 5 cultures of different species of algae to make sure our seahorse-food stayed healthy and fat. Both algae and artemia water quality also need to be monitored, since dead algae/artemia would ultimately mean starving seahorses. To top it off, artemia are not naturally nutritious enough to be the only food source for seahorses. So we added an artemia enrichment-tank (where we add a fatty mix of all nutrients needed for healthy seahorses), which needs to be set up, cleaned, and harvested every day.  The result is that for 3 tanks with seahorses, we have 9 tanks for their food preparation. I’m not sure if you have enough space for that at home?

Fifth challenge: Feeding. As if breeding the food was not hard enough already, feeding them makes it even more complicated. Seahorses have no real stomach to speak of, so they are lousy at digesting their food properly. Because of this they need to eat almost constantly, which is possible in the wild, but harder in an aquarium where too much food will lead to bad water quality. In our case it means feeding them three times per day, every day (bye bye weekends or late nights!). Since our guys have been caught so recently, we can’t just drop the food in the tank and leave it. What works best is hand feeding them with a pipette to make sure they see the food and eat it. Each feeding session takes about 30 minutes, with longer sessions (90 minutes) in the morning, since food has to be harvested first and then a new culture prepared for the next day.

14786903_10154728145307608_1893594246_o

Feeding the seahorses using a pippette

Sixth challenge: Keeping them healthy. Seahorses kept in aquaria are prone to infections, so besides good water quality  it is important to keep everything clean. This means sterilizing all the equipment we use, only handling seahorses with surgical gloves on, keeping workspaces clean, etc. Regardless of this, infections can still happen. So far I have had to treat one infection with freshwater baths. Earlier this week two males had bubbles in their pouch (common in tank-kept seahorses), which needed to be removed using syringes and gentle pouch-massaging. You read that correctly, my PhD involves giving belly-rubs to seahorses.

All of this is needed just to keep our seahorses alive. I won’t go into what it means to actually run the experiments as well. But if you managed to read this entire post, it should be clear that keeping seahorses means a LOT of work. I am only able to do this because I can use the great facilities at Curtin University and because I have the support of experienced lab technicians, dedicated volunteers, and supervisors with experience in aquaculture. After 2 months of caring for my seahorses, I feel even more strongly than before that seahorses should be in the ocean and not in a small aquarium. If you do want to keep them yourself, think it through before you begin. Make sure you have the right setup BEFORE buying seahorses, only buy captive bred animals and be prepared to sacrifice a lot of your free time for your seahorses.

To finish, here is a short video of one of our seahorses eating artemia:

 

 

 

Cleaning mutualism on the reef: It’s a Hip-Hop World!

simon3

Dr. Simon Gingins

This month’s guestblog is by Dr. Simon Gingins, who currently does research on damselfish at the department of Collective Behaviour in the Max Planck Institute, in Konstanz (Germany). Simon and I met a few years ago at the Lizard Island Research Station, where he was doing research on the behaviour of cleaner wrasses. His blog describes some of his cleaner wrasse research….and hiphop. Besides being a good researcher, Simon is also a great photographer, so make sure to have a look at his site.


cleaner_anthias

An anthias gets cleaned by a bluestreak cleaner wrasse

I know this is old school, but do you remember Eminem’s song Lose yourself? Well, to my big surprise, I recently realized that the lyrics fit very well with the ecology of cleaners. Let me show you by quoting the relevant parts of this song throughout the text. But first, let me start with the beginning. What is cleaning? Cleaning is a behaviour that implies the removal of parasites or dead tissues off another animal. It is widespread, particularly on coral reefs. Many species engage in cleaning, including shrimps and crabs, but it is mostly performed by fishes, as diverse as surgeonfishes, triggerfishes, jacks, butterflyfishes, gobies, and many more. Most fishes only clean occasionally, mainly as juveniles, and get most of their food by other means. However, a handful of species are “professional cleaners” and get all of their food through cleaning. Here, I will focus on the most studied of these species, the bluestreak cleaner wrasse Labroides dimidiatus. This species can have more than 2000 cleaning sessions per day, and client fishes actively visit their territories, called “cleaning stations”. They also give massages by vibrating their pectoral fins on the body of their clients, which was shown to decrease cortisol levels in client fishes. Cortisol is a proxy to measure stress, and thus this additional service is beneficial for clients as is calms them down.

So the cleaner gets a meal and the client gets its nasty parasites removed and a massage. Sound like everybody’s happy, no? Well, the situation actually gets more complicated because the cleaner wrasse prefers to bite client fishes and get a mouthful of yummy mucus, rather than focus on the parasites. Biting client fishes is cheating, but mucus appears to be like crack for cleaners. Or as Eminem puts it:

If you had, one shot, or one opportunity,
To seize everything you ever wanted. In one moment.
Would you capture it? or just let it slip?”

Well, it depends, because of course client fishes don’t visit cleaners to be exploited, and they’re not really happy when they get cheated. So how do clients respond to cheating cleaners? Imagine a client fish with a large territory. Large enough that it has access to many cleaning stations.

“He’s known as the globetrotter”

If it’s not happy with the service of one cleaner, it can just leave and look for another one. Basically, it can play the competition.

 “They moved on to the next schmoe”

This is what my ex-supervisor Redouan Bshary referred to as “big city life”: If you’re not happy with your hairdresser, just go to another one. But some client species don’t have choice options. The size of their territory is more like a village than a big city, and these fishes often have access to only one cleaning station, if any. Cleaners appear to be aware of these differences, and give priority and a better service to big city clients than to villagers. But the villagers still have one trick up their sleeve to make cleaners more cooperative: they punish. When they get cheated, they often chase the cleaner and try to bite it:

“No more games, I’m a change what you call rage”

And it was shown that the next time they meet, the cleaner will be more cooperative with the individual that punished it.

cleaner_grouper

Bluestreak  cleaner wrasses cleaning a grouper

Finally, there is one category of clients with whom cleaners behave very, very nicely: predators. A predator striking at a cleaner during a cleaning interaction has never been witnessed so far. Nevertheless, it’s pretty obvious why cheating a predator might not turn out to be a good idea. To quote Eminem again, in interactions with predators:

“Success is my only m*********ing option, failure’s not!”

In summary, when a cleaner is interacting with a client, eating its preferred food has negative consequences. The client might just leave, but it might also try to punish it, or even potentially eat it. Cleaners thus came up with very strategic behaviours in order to determine who they can cheat, and when it’s best to cheat.

“I’ve got to formulate a plot or I end up in jail or shot”

As already mentioned, they vary the quality of the service they provide according to the category of clients. But it doesn’t stop there, they also adjust their behaviour depending on whether they are being observed by potential clients or not. If a client waiting to be inspected witnesses the cleaner cheating other clients, it might decide to leave and search for a more cooperative partner.

“His hoes don’t want him no more, he’s cold product”

As a result, cleaners behave more cooperatively in the presence of an audience. This ability is quite surprising for such a small fish, since thus far the only evidence that the presence of an audience increased cooperation came from humans. While humans benefit from the computing power of a large brain to take decisions, it appears that the cleaner wrasse L. dimidiatus managed to acquire quite sophisticated behaviours without a large brain. Recent evidence suggests that their exceptional performance might be limited to situations linked to cleaning, and fall short outside of their domain of expertise. It seems that the highly social nature of cleaners and the conflicts associated with it drove cleaners to acquire the skills to deal with these specific situations. But it did not select for increased brain size or some kind of general intelligence. So the next time you go on the reef, I invite you to take some time to observe cleaners and to imagine what it’s like to deal with all these clients coming and going.

“This is my life and these times are so hard”

I’d like to conclude by pointing out that for a guy who claims to have read only one book in his entire life, Eminem proved to have great insights when it comes to cooperative behaviour in fishes. And from what he confesses in another song (Without me), he considers himself an important contributor to fish conservation too:

“No matter how many fish in the sea it’d be so empty without me”

Dr. Simon Gingins

simon2

Simon during fieldwork

Postdoctoral Fellow

Department of Collective Behaviour

Max Planck Institute

Twitter: @SimonGingins

Email: simongingins@hotmail.com

Training Marine Biologists: Coral Bay fieldtrip

Last week I’ve had the pleasure of exploring a new, beautiful area of Western Australia: Coral Bay in the Ningaloo Marine Park. I wasn’t visiting just for fun, but went over to tutor during a marine field project for the third year marine science students of Curtin University.  The goal of the course is to get marine science students hands-on experience with working in the field. To achieve this, the students worked in groups of 4 on a research project of their choice, with a bit of help from their lecturers (and tutors). As I have written earlier, there are a few very good and a few very bad reasons to want to become a marine biologist. This link is another great write-up for people considering to become a marine biologist. So besides being very keen to help with training a new generation of marine scientists, I was also rather curious to find out more about these people keen to trade civilised comfort for sunburns, sandy beds and soaking in salt water for hours on end.

Panorama

Coral Bay

The 23 students taking the course were a diverse bunch, but they all share a passion for the ocean. To my great relief, most of them actually seemed interested in science and real marine ecosystems, and not just in hugging dolphins (=the WORST reason for anyone to consider becoming a marine biologist). Or maybe they just didn’t dare to admit it in front of me? Regardless of what motivated them, before I even got on the bus with them for the long drive (15 hours) to Coral Bay, they had already spent a few weeks preparing their research projects. The projects were diverse, with groups looking at topics like coral cover, parrotfish abundance, sediments, fish diversity, etc. None of the groups was looking at my kind of critters, but that only meant I would get to learn a few new things myself as well.

DUV

Student ready to survey fish

After arriving late at night in Coral Bay, the daily schedule was for students to go out to do fieldwork by day, and to come back to the research station in the afternoon to enter their data and analyse videos where possible. The tutors (Ash and me) were mostly expected to chill out on the beach to make sure nobody drowned, join students in the water to help where possible and answer any practical questions the students might have. As is usually the case with fieldwork, especially when you are new to it, getting started isn’t always easy. Regardless of what you are surveying in the ocean, you will need a fair bit of equipment, ranging from slates, to GPS’s, measuring tapes, plastic bags, cameras, quadrats, etc. Understandably, one of the main issues in the first days was forgetting to bring crucial pieces of equipment to the site, or loosing equally  crucial equipment in the water (sometimes never to be found again). Identifying fish and corals is also more challenging once you are in the water than what you’d imagine it to be while preparing your project. But as the week went on, the groups started to find their rhythm, got more confident and grew enthusiastic about getting results. That feeling of collecting real data is always a great one. The next step for the students now they’re back in Perth is to analyse their data and write their results up into a research paper. Which makes this project a great practice for other, more serious research projects they might do in the future.

Nikki_coral

Nikki staining corals

While the students were working away on their projects, I was also helping out my colleague tutor and PhD-candidate Ash. Her work looks at the effects of climate change, and as part of her research she will be collecting environmental data from all around Western Australia. This week she was testing her brand new, high-tech in-situ CO2 sensor. I imagined it would be as easy as chucking out an anchor in the ocean, but turns out it involves a fair bit more thinking and crafty tinkering to deploy the unit successfully. I also gave Nikki (the unit coordinator) a hand staining corals, a technique that is used to measure growth rates of coral. I had hardly done any work with corals before, so it was great to learn something new and see how coral scientists spend their days in the field.

Fluo Lizardfish

Biofluorescing Lizardfish

I even had time to go for a cheeky night-snorkel for myself to check out biofluorescence in the bay. Turns out there is quite a lot going on! Mostly coral showing green fluorescence, which seemed brighter than many locations I’d checked fluorescence previously. In the shallow, sandy areas there were loads of lizardfish and goatfish, and even a few bright green nudibranchs. It was interesting that during the snorkel I didn’t see any other fluo colours than green, compared to the mix of green, yellow, orange and red I got used to seeing in Southeast Asia. The question of why this is the case remains a mystery to me…

Looking back at this week, I am very happy I got the chance to join the field trip. From a personal point of view I got some great experience teaching and guiding students,  I learned a few new research methods in the water, all of that while staying in a gorgeous location. Most of all though, I enjoyed helping out with the education of new marine scientists. It is great to see motivated students find their way in the field and grow confident and enthusiastic about the work they are doing, and I am honoured to be able to help out with it. I don’t know which direction they will go after graduating, but it would be good to see at least a few of them as colleagues in the future. I wish them all the best, and hope they enjoyed the trip as much as I did.

Group

Climate vagrants: Guestblog by Joey DiBattista

I have been writing blog posts about my research for over a year now, talking about how interesting my research is. But there is a lot of interesting marine research happening besides mine. So I will now try to get friends and colleagues to write guestblogs about their research, giving you the chance to have an even better insight in what happens in the world of marine biology.

The person to kick off this new section of the blog is Dr. Joseph DiBattista, a geneticist at Curtin University. If you have been following the Critters Research Instagram account, you might have noticed I was up in Shark Bay last week. I was there to help Joey with his research on “vagrants” in the waters of Western Australia. His blog explains more about these vagrants and what they have to do with climate change…


The age of climate change is upon us. This reality can no longer be denied given that the scientific evidence is overwhelming. One of the areas hardest hit by this human-influenced phenomena is our oceans, and the result for our precious coral reefs is often bleaching, bleaching, and more bleaching. Just ask those that study our beloved Great Barrier Reef, a UNSECO world heritage site where only 7% of its corals escaped nature’s wrath in early 2016.

Heronbleachingsml

Bleached coral at the Great Barrier Reef. Photo: XL Catlin Seaview Survey

At the same time that corals were suffering in Australia, so were mangrove forests that border the Cape York Peninsula in the Gulf of Carpentaria, which experienced a die-off like scientists worldwide have never seen before (i.e. 7,000 hectares of mangroves left dead or dying…). The recent temperature fluctuations are attributed to this year’s particularly strong El Niño–Southern Oscillation (ENSO), and have now caused bleaching at Indian Ocean coral reefs in the Maldives and at Christmas Island for example, and are imminently predicted for tropical sites further north in the Pacific Ocean (e.g. Okinawa).

It may seem like temperate ecosystems are protected from these warming effects, but no more are we feeling the heat than in the coastal waters off of South-Western Australia (WA). Near the end of the summer of 2011 we suffered through what was aptly coined a “marine heat wave”. Sea surface temperatures from Ningaloo reef to the southern tip of the continent at Cape Leeuwin, a distance of more than 1,500 km, crept up to over 5° C above the seasonal average. This affront was both broad and sustained, extending out more than 200 km from shore and lasting more than 10 weeks. The heat wave killed off more than 100 km of economically important kelp forests (often teeming with their own rich and unique fauna), that have to this day not recovered, but instead may slowly be replaced by corals, a process known in the science world as tropicalisation.

Chaetodon lunula

Tropical species like this Racoon Butterflyfish (Chaetodon lunula) are increasingly found in Western Australia’s temperate waters. Source: www.redmap.org.au

This heat wave in 2011 overlays on top of an already warming trend in WA, which itself has been flagged as a global climate change hotspot. Climate change not only affects the kelps and the corals, but appears to be resulting in tropical and subtropical fish species rapidly moving towards the poles. Indeed, in addition to WA, tropicalisation has caused important changes to temperate ecosystems by introducing tropical fishes to sites in western Japan and off the coast of New South Wales, all themselves bathed in warm water currents that act as vehicles for this fresh “flow” of fish larvae.

eDNA_Joey

Joey filtering water in Shark Bay to extract eDNA

Normally the water temperatures cool over winter months and these juvenile tropical “vagrants” die off, never to reproduce themselves (…sniff, sniff, shed a tear…), but not for some species. In rare cases, enough individuals survived and have now taken up permanent residence in their new southerly (or northerly for Japan!) home. I have a keen interest in these survivors along the coast of WA, where I have started to use next generation sequencing technology to track the movement and diet of these vagrants. This technology is capable of simultaneously sequencing millions of copies of DNA from complex samples, at a not so nominal cost of course. This innovative work is only possible because of a close collaboration with the Trace and Environmental DNA (TrEnD) laboratory at Curtin University in Western Australia. Particularly Professor Michael Bunce, who has extensive experience in isolating DNA from a variety of substrates including bulk bone, faecal material, and, more recently, samples sourced from the marine sector such as filtered water and fish stomach contents. This project remains in its infancy, but with the Department of Fisheries WA supplementing samples and the TrEnD Lab supporting my experimental work, I am confident that we will soon know exactly where these vagrants are coming from and what they are doing once they get here.

Dr. Joseph DiBattista

Early Career Postdoctoral Research Fellow

Department of Environment and Agriculture

Curtin University

E-mail: josephdibattista@gmail.com

Note: For those keen recreational fisherman or scuba divers in WA, there is a website dedicated to tropical fish species that seem “out of place” in their new temperate environment (click here for site). I encourage anyone that spots vagrant fish to take photos and register their important find on this regularly updated website.